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Imino acids are critical for the conformational stability of the
collagen triple-helix. The close packing of three supercoiled chains
in the triple-helix generates the requirement for a (Xaa-Yaa-Gly)n

repeating sequence, while a high content of imino acids is necessary
to stabilize the extended polyproline II-like structure of the
individual chains.1 Pro is the most common occupant of the
X-position, while the Y-position is frequently occupied by 4R-
hydroxyproline (Hyp), which arises from posttranslational modi-
fication of Pro. Peptide models have proved important in defining
the structural features of the collagen triple-helix. The earliest
models are based on multiple repeats of a given tripeptide unit,2

while more recent host-guest models include an individual
tripeptide unit substituted within a constant repeating framework.3

In the present study, we report unexpected differences between the
effect of imino acids in these two types of model systems.

The sequence Pro-Hyp-Gly is the most common tripeptide unit
in collagens, and peptides with repeating Pro-Hyp-Gly units, e.g.
(Pro-Hyp-Gly)10, have served as models for the triple-helix
conformation by X-ray diffraction,4 NMR,5 and thermodynamic
studies.2a,6Early evidence for an additional stabilizing effect of Hyp
in the Y position came from the greater stability of (Pro-Hyp-Gly)10

compared with (Pro-Pro-Gly)10.2a,6 The mechanism of Hyp stabi-
lization has proved controversial. No direct interaction of the
hydroxyl group of Hyp is possible within the triple-helix molecule.
It was suggested a water-mediated network involving Hyp con-
tributes to its enthalpic stabilization,7 and more recently, evidence
of an electron-inductive effect has been reported.2c,8High-resolution
X-ray crystallography indicates imino acids in the X-position adopt
theendoring pucker, while the Y-position favors theexopucker.4d

Hyp alone or in proteins favors theexopucker as a consequence
of its electron withdrawing effect,8 providing additional stability
when it is found in the Y-positions in collagen.4d This helps explain
the position dependence for Hyp stabilization as shown by the
inability of the peptide (Hyp-Pro-Gly)10 to form stable triple-
helices.9 Raines et al. showed that the electron-withdrawing effect
of F in fluoroproline promotes the gauche (exo) ring pucker,8

consistent with the very high stability of peptide (Pro-Flp-Gly)10

(where Flp is 4(R)-fluoroproline), which is even more stable than
(Pro-Hyp-Gly)10.

While repeating tripeptides are uniquely useful as models for
collagen, the effects of individual Xaa-Yaa-Gly sequences have also
been successfully investigated using a host-guest system of the
form Ac-Gly-(Pro-Hyp-Gly)3-Xaa-Yaa-Gly-(Pro-Hyp-Gly)4-Gly-
NH2.3 The propensities of the 20 common amino acid residues in
the X- and Y-positions were determined, and all formed stable
triple-helices, with a 25°C range of stabilities. The stabilizing effect
and mobility of a given residue in the X-position was not equivalent
to the Y-position, consistent with their different environments within

the triple-helix.10 In the present study, Pro, Hyp, and Flp residues
were incorporated in X- or Y-positions of a guest triplet in the
host-guest peptide design, to compare with repeating tripeptides.11

These host-guest peptides formed stable triple-helices at low
temperatures, as shown by their characteristic circular dichroism
(CD) spectrum, with a maximum near 225 nm and a minimum
near 198 nm12 (Figure 1). Measurement of CD thermal transitions
at pH 7.0 in phosphate-buffered saline (PBS) indicated that Pro-
Hyp-Gly,13 as well as Hyp-Hyp-Gly showed the highestTm values,
followed by Pro-Pro-Gly, Pro-Flp-Gly, and Hyp-Pro-Gly (Figure
2). Even though a triple-helix cannot be formed by (Hyp-Pro-
Gly)10,9 a single Hyp-Pro-Gly unit can be incorporated into a
collagen conformation with only a small amount of destabilization.
The lack of triple-helix formation by (Hyp-Pro-Gly)10 has been
attributed to the unfavorable placement of theexopuckered Hyp
in the X-position, although it is not known whether the Hyp ring
remainsexopuckered in the host-guest environment.

The changes in thermal stability are very small (<5 °C) among
the five host-guest peptides compared to the large changes (>90
°C) seen among (Pro-Hyp-Gly)10, (Pro-Pro-Gly)10, (Hyp-Pro-Gly)10,
and (Pro-Flp-Gly)10 (Figure 2, Table 1). The effect of one Xaa-
Yaa-Gly tripeptide in the host-guest system is expected to be much
less than in a (Xaa-Yaa-Gly)10 context, consistent with the small
changes observed. If stabilization or destabilization of the triple-
helix occurs by the same mechanism, the host-guestTm values
are anticipated to follow the relative order of repeating peptides,
but with a decreased magnitude. The simplest model predicts the
stability of (Xaa-Yaa-Gly)10 would differ from (Pro-Hyp-Gly)10 by
10 times the difference between Xaa-Yaa-Gly and Pro-Hyp-Gly in
host-guest peptides (Table 1,Tm

pred repeating). The relative order
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Figure 1. CD spectra of host-guest peptides at 0°C (solid line) and 80
°C (dashed line).
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(Pro-Hyp-Gly) > (Pro-Pro-Gly)> (Hyp-Pro-Gly) is the same in
host-guest and repeating tripeptides. However, a lower stability
is observed for repeating tripeptides than predicted by using a simple
additive method based on the host-guest system. This suggests a
Pro-Hyp-Gly host environment has a more stabilizing effect on Pro-
Pro-Gly and Hyp-Pro-Gly than its own repetition. This greater
stability could be related to a hydration network established in the
Pro-Hyp-Gly host environment, which is supported by similar
calorimetric enthalpy14 values for all host-guest peptides (Table
1). Previous studies showed the stability of a repeating Pro-Arg-
Gly peptide was much lower than expected on the basis of the host-
guest system,15 supporting the importance of the context, although
charge repulsion may also be a factor.

In only one case, that of Pro-Flp-Gly, the relative order in
repeating tripeptides and the host-guest system are reversed. The
peptide (Pro-Flp-Gly)10 is more stable than (Pro-Hyp-Gly)10,8a and
Fields and colleagues16 reported that a single substitution of a Hyp
by Flp in a peptide containing a type IV collagen sequence led to
a slight increase in stability in water. Thus, it was not anticipated
to find that the Pro-Flp-Gly host-guest peptide is somewhat less
stable than Pro-Hyp-Gly (Figure 2, Table 1). This failure of Flp in
the Y-position to increase stability of the host-guest peptide
suggests different mechanisms are in place when one Pro-Flp-Gly
unit is embedded within the Pro-Hyp-Gly context, compared with
(Pro-Flp-Gly)10. This discrepancy may be attributed to contributions
in the unfolded as well as the folded states. The increased stability
of (Pro-Flp-Gly)10 is likely to be entropically driven, as a result of
the favoredexo ring in the Y-position of the unfolded form, and
its polyproline II-like nature is supported by the high 225 nm
ellipticity at elevated temperatures in its unfolded state (Figure
2).8a,17 No preferential polyproline II structure is found for Pro-
Flp-Gly in host-guest peptides, where all ellipticities and temper-

ature-dependent slopes are similar (Figures 1, 2). The impact of
sequence environment on residual monomer structure and on the
native-state hydration network may be responsible for the differ-
ences in stability contributions of the same tripeptide unit in host-
guest versus repeating tripeptide systems.
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Figure 2. CD thermal transition curves for host-guest peptides (solid
lines: Pro-Hyp-Gly, black; Pro-Pro-Gly, red; Pro-Flp-Gly, green; Hyp-Pro-
Gly, blue) and repeating tripeptides (dashed lines). The curve for (Pro-Flp-
Gly)10 (dotted line) was taken from Holmgren et al.8a

Table 1. Thermal Stabilities and Calorimetric Enthalpies for
Host-Guest Peptide Series and (Xaa-Yaa-Gly)10 Repeating
Tripeptides

triplet

Tm
host−guest,

°C

∆H cal

host−guest,
kJ/mol

Tm
pred

repeating,
°C

Tm
obs

repeating,
°C

∆H cal

repeating,
kJ/mol

Pro-Hyp-Gly 47.3 215 - 60.0 390
Pro-Pro-Gly 45.5 213 42 32.6 180
Pro-Flp-Gly 43.7 204 24 87.08a unknown
Hyp-Pro-Gly 43.0 204 17 <0 -
Hyp-Hyp-Gly 47.3 217 60 unknown unknown
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